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The method of point mapping is used for investigating the laws governing the 
phase space structure , and also the conditions of existence and bifurcation of 
stable periodic motions of nonautomonous dynamic systems with collision inter- 
actions. Investigation is based on the identity of phase structures in the proximi- 

ty of the surface of emergence from the slippage mode region of the simplest 
nonautonomous system and of systems of a very general form [l, 21. The results 
made it possible to formulate a bilateral method for determining the boundaries 
of regions of slippage, and thus provide the final proof of the iterative computa- 

tion procedure [2 - 41. The method developed here is illustrated on the exten- 
sion of the model used for defining various vibro-shock mechanisms [5]. 

1. Motion of a material pofnt in a one-dimen:ionol half-rpacs 
rubjected to an external linear force, The considered model represents 

the simplest system with collision interactions. The subsequent analysis will show that 
it brings out in the small the singularities of dynamics of a fairly wide class ofsystems. 

1.1. The equations of motion are of the form 

Y” = t, Y > 10 (1.1) 

y (tk) = h,, y’ (tk + 0) = - Ry;, yk’ = y’ (tk - 0) < 0 (1. 2) 

y = Ao, y’ = 0, t < 0 (t = (FT - Q) / m, y = (F / m)2 q) (1.3) 

where the variables t (independent) and y are related to the dimensional quantities r 

(time) and q (the distance of a material point from a fixed reference point 0) by the 

above formulas ; m is the mass of the material point ; F > 0 and Q > 0 are para- 
meters of the external force Fr - (2 that is linear with respect to time ; R E 10, 11 
is Newton’scoefficient of velocity recovery after a collision,and h, is the displacement of 0 
from the half-space boundary (the limiter). Usually the quantity h, is made nonnegative 
[2, 4, 61, however in this Section it is sufficient to set &, = 0. 

The phase space <D of system (1.1) - (1.3) is defined by the coordinates r, y > 0, 
II’, hence it is three-dimensional ( dim 0 = 3 ). In the case of piecewise continuous 

systems it is sufficient to subdivide the phase space only at the surface of merging of 
trajectory sections on 11 (y = 0) [6]; in our case even on a part of it only, namely on 

the half-plane n_ (y = 0, y’ < 0) or I]+ (y = 0, y’ > 0). The subdivision is 
carried out by the method of point mapping. For this we introduce the inverse mapping 
T- of n_ onto itself; it is generated by the trajectories (1.1) and (1.2) between the 
k- th and the (k + I)-th collisions (tk > tk+J. Formulas for T- are obtained by in- 
tegrating (1.1) for initial conditions (1.2). They are 



t k+l = t, - ok* &+I = (/fYc’ - Oktk) / 2% 

61( = - 321, / 2 + [(3t, / 2)2 - 6y,Q]“’ 
(1.4) 

The last equality implies the existence of the point map T- throughout 11 . Let us 
define the kind of dependence of T- on coordinates of the “reference” point Mk (tk, 
yk = 0, ysk) when the latter tends to the boundary I’ (y = 0, y’ = 0) between ]I_ 

and n,. For this we define the limit values of expressions for y’k+r and okas follows: 

lim yh.+r = - &tk / 2R, ]im ok = 3tk (1 + sign tk) / 2 (1.5) 
!lh-'-+O !/I;-0 

It is obvious from (1.5) that the passing to limit r in the quarter-plane n_- (t < 0, 
y = 0, y’ < 0) results in the degeneration of map T- into an identical one, while 

in region II_+ (t > 0, y = 0, y’ < 0) the map does not degenerate. At the boundary 

point M” between the semiaxes r+ (t > 0, y = 0, y’ = 0) and JJ_ (t < 0, y = 
0, y’ = 0) the mapping T- converts continuously to an identical one. The described 
properties of passing to limit make it possible to uniquely determine T- at the bound- 

ary of half-plane II_ by using formulas (1.5) and (1.3) for r+ and r \ rL , respect- 

ively. 
We apply to II_ transformation T-” which is the k-fold product of maps T-. We 

then obtain region IIk zz T-k9_ c n_ whose boundary is evidently determined as 
the image of transformation T-kl?, i.e. it consists of semiaxis r_ and curve rk 3 
T-“I?+ , adjacent to M” . With the use of Eqs. (1.4) it is possible to prove by induction 

that rk c II_- and that it represents the semiparabola 

y’ = - y#, Yk > 0, t < 0 (1.6) 

where the coefficients yk = yk (R) and ~k+~ = ~k+r (R) are related to each other 
by the parameter ek s - 1~~ / tk+l and by the following formulas: 

38, - 28,2 38, - 8,Z 3 
Tc = 6 (1 _ ek)2 ' TIC+1 = 6R 7 71=x (1.7) 

Since tk E it,,,,, 01, hence 
0, E [O, II (L8) 

When k is run through a sequence of positive integers the ordered sequence {r,} 
must develop in a positive or negative direction (see Fig. 1, a, where the curve denoted 
by k corresponds to rk) , if the Jacobian of map T-- in IT_ retains its sign. Computing 
the partial derivatives ayb,, / a~~,‘, d~lr+~ / atk, o’tk+r / dyk’, and dtk+r / dtR 
and expanding the determinant o (yk+rr tk+r) / 8 (yk’, tk), in accordance with (1,8), 
we obtain 

J =(3--2@,)lR(3--Ok)>0 (1.9) 

Since semiparabola I?r is turned relative to r+ in the positive direction, inequality 
(1.9) ensures the same orientation of rk+l relative to rk, hence yk+l ( yk [7]. 
Note that on r+ we have J = 0. However, owing to the continuity of T- , this dege- 
neration is of no importance for the determination of orientation of rk and rk+l rela- 
tive to each other. 

Thus the bounded numerical sequence {yk} monotonically decreases with ys as its 
limit. The expression for the latter in terms of R is obtained from (1.7) and the supple- 
mentary condition 
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Yk - Tit+1 = Ys (1. 10) 

After some simplifying transformations, for the coefficient ys of semiparabola l’, , 
which is invariant with respect to T-, we obtain the relationship 

ys = (30, - @s2)/ GR, OS3 - 5Qs2+ (7-2R)O, - 3 (1 -R) = 0 (I. 11) 

where the svmbol 0, denotes values of 0 k segregated by (1. 10). 

a b 

Fig. 1 

By the Strum theorem [8] only one of the three real roots of the second of Eqs. (1.11) 
satisfies condition 0, E [O, I]. That root monotonically decreases in the interval 
[l. 01, when R increases from 0 to 1. 

With the use of the transformation 0, = 1 - h it is possible to obtain from the second 

of formulas (1.11) the characteristic equation [9, lo] and, thus to relate formally para- 
meter 1~ to the quantity 8, whose physical meaning is clearly that of the coefficient of 
the slippage mode duration [Z]. It also indicates the feasibility of obtaining the equation 
of semiparabola r’s by the method developed by R. F. Nagaev. 

Thus the sequence of semiparabolas {r k } and r, divides n_ into a denumerable set 
of regions 

IT_ I> rII, :> . . . I> II, 3 I Ih.+1 Ij . . . -J 11, f ;!iir’Tk 

embedded in one another. 
The evident reversibility of T- clearly implies that when M1{ E Pk G IIk-i \ 

lI,, the motion of system (1.1) - (1.3) is accompanied by Jc collision interactions that 
consecutively occur in subregions P,<, Pk_l, . . ., p,. The mapping point &f (f, Y, 
y’) having passed through P,, moves into the half-space G (y > 0) and remains there 
in the interval (ti, CX) (see Fig. 1, b where the shaded region /C = 4 corresponds to 

P4 ). 
The shift of Mb onto the boundary of subregion Lk leads either to the degeneration 

of the final collision into a contact (Mk --t I?&, or to an additional interaction of a 

kind of contact between trajectory (1.1) and surface n (Mk --+ r’,) which takes 

place at some instant t, fG (ti, o0) . If the initial conditions relate to region TI, 

bounded by l’_ and I’$, a slippage mode is realized in the system [l - 43. In fact, by 
definition the mapping point returns in this case to fl, after each collision and shifts 
at the same time in the direction of increasing t . Thus, after a denumerable set of 
transitions along collision-collisionless sections of trajectories, point M at some limiting 
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instant of time t, < 0 reaches the semiaxis r , and then moves along it in accord- 

ance with the law (1.3) until it arrives at the convergence point w (Fig. 1, c). The 
duration h of an infinite-collision process originating at point M, (t,?, 0, Y,') E n,, 
is obviously finite and equal to the difference t, - t,. The value h. := --t, relates 
to the border process that develops along rs and decreases to zero with decreasing R. 
The general asymptotic representation of quantity h was obtained in [2]. 

Since 9”’ (t) I,, > 0, the mapping point moves from M” along the trajectory (1. 1) 
to G, where in the interval (0, oo) it monotonically moves away from n. Note that 
when F i 0, ns .:..n_ and y”’ (t) < 0, which means that M after reaching at 

instant t, the semiaxis r_, continues to move along it in the interval (too, oo). 

Thus the system of configurations of {Pk } and n, represents the complete subdivi- 

sion of rI_ into regions where the material point moves in a one-dimensional half-space 

with different numbers of collisions with its boundary. 
Let us examine the character of displacement and deformations of Pk and II, pro- 

duced by variation of the system parameter. Formulas (1.7) and (1.11) imply that co- 
efficients yk and ys monotonically decrease in the interval [0, l] from infinity to 
Yk (1) > 0 and ys (1) == 0 , respectively (see Fig. 2, where curves 1.2 and 3 correspond 
to ye. *PJ and r8). Semiparabolas 1-k and I‘, are, consequently, turned from the semiaxis 

Y _ ( t = 0, y = 0, y’ < 0) in the positive direction up to the limit position defined by 
coefficients yk (I) and ys (I). In that case subregions PI, and 11, behave as described 
below. 

Owing to the displacement of I1 to the position corresponding to ~1 = VP , P, widens 
in the direction away from the boundaries of II_+ . 

For R = + U , Pk (k = 2, 3, . ..) are generated as flat regions from the one-dimen- 
sional set Y_ , and then rotated around M” in the positive direction. Simultaneously, 

as shown by the analysis of dyk+, I dyk, Pk. first widens and then contracts. 
For R = 0 we have II, = lI--. With increasing R region II, sharply contractsowing 

to the displacement of f, , and for ZC = 1 degenerates into the semiaxis I_. Examples 

of subdivision of II_ are shown in Fig. 3. The semiparabolas r,, I2 and-r, represented 
by solid lines (curves 1,2 and 3, respectively) relate to R -= 0.2, while those shown by 
dash and dash-dot lines relate, respectively, to H = 0.5 and R = 0.75. 

If R fluctuates, the established above extremely fine phase structure is to a consider- 

able extent disrupted. For instance, if the maximum fluctuation range is AR = 0.05 , 

the inequality y2 (R -k AR) < ys (R - AR) is satisfied in the interval R E 10, 0.4) 
(Fig. 2) and,consequently,the set {Rk} (k = 3, 4, . :) is completely covered by parts of 

f’, and II, configurations. If R E 10, 0.251, then yr (R -I- AR) < ys (R - AR) and 
the system of overlapping subregions comprises also pz* In that case the semiparabolas 
with coefficients yi (R - AR) and ys (R + AR) subdivide half-plane II- into three 
basic regions : pl*, p* and l&*. It can be reliably assumed that Pr* and IIs* corre- 
spond to single-collision and slippage modes, respectively. In subregion P*? which lies 
between PI+ and II,*, motions with any number L of collisions may take place. The 
probability of considerable values of k is the higher the farther the initial point in P+ 

lies from the parabola with coefficient yl (R - AR). 

Owing to unavoidable errors of idealization and to fluctuations of R , a separate con- 
sideration of /c-collision motions in actual computations is expedient only for k < k*, 

where k* depends on AR and other (negligible) errors. If k > k* it is reasonable to 
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relate in the dynamic model the denumerable set of subregions Pk either to Pk. or to 
l-f,. Such approximation leads essentially to a refinement of the model which is equi- 

valent to (1.1) - (1.3) but has an incom- 
parably simpler pattern of subdivision of 
II_. Usually k* < 3 [2 - 41, and in the 
simplest case II, 3 Pk (k > 1) [ll]. 

Fig. 2 

tl I 
. 

Fig. 3 

1.2. Formulas (1.7) after transformation of the first of these to 

O,- 1;s (1 + 4y,) - (9 + 24y,J+ 1 / 4 (1 $- 3~~) 

can be formally treated as defining an iterative process for solving the problem of sepa- 

rating the boundary of region II,. Let us consider in connection with that problem the 
properties of solutions which are obtained in the above investigations and make it possible 
to formulate a general method of deriving successive approximations that converge to 

TV 
First, let us note that, as implied by (1. ‘I), map T- converts any arbitrary semiparabola 

I” c II_ that originates at MD to semiparabola I’r’ ES T-I” C II_-. Hence, taking 
into consideration the uniqueness of the invariant curve rS and condition (1.9), it is pas- 
sible to assert that the iteration sequence 

{r,’ G T-“I”} (k = 1, 2,. . .) (1.12) 

converges to rS and monotonically develops in a fixed direction which is negative in- 

side n, when I” c n,$, or positive outside II, in the opposite case. The described 
features of (1.12) are represented in the Koenig-Lamery diagram constructed with the 
use of (1.7) (Fig. 4). 

Let us now take the next step. Since the plane subregion comprisesl between r,_r 
and rk’ degenerates for k+oo into a one-dimensional set rS, the iteration (1. 12), 
where r’ is an arbitrary continuous curve that originates at M”, always converges to 

the boundary of region II,. hr other words, the map T- in the space of curves (1.12) 



metrized in some way is pressing throughout the region toward the invariant semipara- 

bola I’$. The direct mapping T (tk < tk& is pressing toward I’- in the space of 
curves S+’ C If,, i.e. in its own part of 

Fig. 4 

the region of determ~ation of n,. 
For the actual determination of rs by 

means of (1.12) it is evidently sufficient to 
take as I” the &-section adjacent to the con- 
vergence point of an arbitrary curve that is 

continuous in an as small as desired e-neigh- 
borhood of ilP. 

N o t e 1. 1. The computation process 

(1.12) is directly applicable to the solution 
of the general problem of separating the boun- 

dary rsi of region II,,, which is determined 

by the instant of completion of the infinite- 
collision process and does not exceed a spe- 

cified ti < 0. In such case the e-section 
adjacent to Mi (tt, 0, 0) is taken as the ini- 

tial approximation. 

2. The dynamic ryltbm with a 
single degree of freedom (gene- 
ral cars). The system of the very general 
form considered in this Section may be inter- 
preted as the law of motion of a point of mass 
n in a one-dimensional half-plane subjected 

to the action of an arbitrary external force, 
2.1. Motion of the point in the time intervals (tk, tk+J is defined by formulas 

y” = f (& Y7 Y'>? Y > ho (2.1) 

Collision interactions in the case of a limiter are subject to law (1.2). Fnnctior f (t, 
y, y’) represents in Eq. (2.1) the total force interaction of the external medium and 

excitation forces normalized with respect to m. We assume that f E fC? and depends 

on parameters A,, . . ., h, (r is a positive integer) which together with h, and R con- 
stitute space I) (dim D = I” .f 2). 

As in the case of (1.1) - (1.3), the phase space @ of system (1.2),(2.1).(2.2) is de- 
fined by the coordinates t, Y > ho, y’ and dim CD = 3. If during its motion point 
M reaches section r_ (y = &, 8’ = 0, y” < 0), its subsequent behavior is no ion- 

ger determined by Eqs. (1.2) and (2.1) and must be additi~al~y defined. For this we 
use the equations of kinematics 

y = a,, y’ = 0, f < 0 (2. a 

Formula (2.2) defines the motion of the phase point along r_ up to the instant when it 
reaches the state w 

?J* = h*, y-O = 0, flA40 = 0, $I,O>o (2.3) 

from which M moves to G along the trajectory (2.1). 
In what follows we assume that to =O. If a real solution of (2.3) ex~~,suchequa~ty 

can be always obtained by a linear substitution of the variable t. 
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The additional definition thus derived is physically sound. Formally it presupposes the 
existence in the small neighborhood of I?_ of map T (T-) of region Ii_ (y = ha, 
Y’ < 0) onto itself generated by relationships (1.2) and (2. I), and also oi the continuity 
of conversion of T (T-) to an identical transformation when the initial point Mk tends 
to I’-. The indicated features of T (T-) are determined by the properties of f which 
in specific systems can be established by a conventional test. In the small neighborhood 
of Ilrf” the prope&tieS of T (2’3 mapping imposed by (2.2) follow from the topological 
identity (which is proved below) of phase structures of systems (1.1) - (1.3) and (1.2), 
(2. l), (2.2) in the neighborhood of the convergence point. 

To prove this we use Taylor’s multiple formula and set, without loss of generality, 

7L0 = 0 . Taking into account (2.3), we write 

a# f = at 
ar I ai 

M’ t + v MO ?J + ay’ Mu ?I’ + X (1’9 ?/‘q Y”) I (2b4) 

L’E (0, % Y’E Co; Y), Y”E (0, !/‘I 

where X is the residual term. 
Assuming for the time being that (8f / at. df / ay- df / ay’) jMO J- o , we find that the 

behavior of trajectories (2.1) in proximity of i@” is defined by the following linearized 
equation of CoUisionless motions: 

(2.5) 

To estimate the zero solution of (2.5) in the neighborhood of Xt” we represent ?I (t; ; 
in the form of Maclaurin’s series. This with (2.3) yields the relationships ,q (t) = 0 (t3) 

and y’ (t) = 0 (t2). 
The behavior of trajectories (2.1) in the neighborhood of the convergence point is 

essentially determined by the nonautonomous term (af / at),, t of expansion (2.4) The 

remaining terms and, consequently, also condition (af / +,I. dt / aY’)MO # 0 can be neg- 

lected. We assume that (8f / dt),. = 1 to within the scale of the independent variable. 

This yields the system considered in Sect. 1 and, evidently, proves the topological iden- 
tity of phase structures of (1.1) - (1.3) and (1.2), (2. l), (2.2) in the neighborhood of M”. 

The subdivision of IJ_ as a whole is determined by the derived specific sequence 

{I?, EZ T-I,), h w ere r+ is specified by the relationships 

y LZ h,, y’ L 0, y” > 0 (2.6) 

It is, however, evident that in the neighborhood of the convergence point the sequence 
{r,} coincides within smalls of higher order with the pencil of semiparabolas (1.6). 

In a number of practically im~rt~t cases f = rp (t) - w2y - vy’ [2 - 63, For 

such models the Jacobian of 7’ mapping is of the form J z oxp @ok) ~~*lR~y~. , > 
0, hence the phase structures of systems (1.1) - (1.3) and (1.2), (2. l), (2.2) are topo- 
logically identical not only locally but throughout n_ 

2.2. The above analysis shows that the iteration process (1.12). where I” is the E- 
section adjacent to the convergence point, always converges to rS of region 11, of sys- 

tem (1.2), (2. l), (2.2). In computing specific models it is convenient to use the bilate- 
ral procedure (X.12), since it makes possible to estimate the closeness of the k-th itera- 
tion to I’, at each k-th step, using, for example, the integral estimate of %t of the form 
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where Yk+ and \Yr_ define the variation of y’ along the curves of internal {r,‘+ E 

T-” r+’ c I\,} or external { I’k_ E TmKl’_’ F II,) iteration sequences ; r,’ c II, and 
JJ_’ E fl, are the related starting &-sections. 

Theoretically the absolute convergence of the computation process (1.12) differs from 
successive approximations to TS in the form of series in powers of some small parame- 

ter [9, lo]. Such approximations have any meaning only inside the convergence circle 
of the resolving series. The determination of the radius of such circle is extremely com- 
plicated even for the simplest systems. As far as the author is aware, this problem was 

not considered in any works on the dynamics of systems with collisions. 
2.3. The case when function ,f is 2n- periodic with respect to t is particularly in- 

teresting, since it admits the existence of stable periodic motions. If we assume a, ‘> 0 , 
then, owing to the identity of planes t = 2nx (n is an integer), space 0 can be con- 
sidered to be a region consisting of points lying on and outside a cylindrical surface rI 
of radius ?L,,. Since in such representation of 6 the coordinate f is taken along the 

directing circumference 1‘ (y = A,,, y’ = 0) from a certain fixed radial direction, it 
is clear that j-fold (j is a positive integer) periodic motions are defined by trajecto- 

ries (1.2), (2. 1) and (2.2) which envelop II j-times (see Fig. 5, a, where j = 3). If a 
k-collision periodic motion takes place in the svstem, a k-term cycle of stationary 

points Mk_i 5 TiMk c Pk_i (i = 0 for mod k) of map T (Fig. 5, b, j = 1) 
corresponds to it. When the stationary points pass from inside Pk_i either on rk_i or 

rk-i_i , a C -bifurcation of the k-collision motion takes place. If M, E TM” E I’& 
(Fig. 5, c, j = 1) a periodic motion with a section of slippage mode obtains in the sys- 
tem (1.2),(2. l), (2.2). its period L is defined as the time interval between two con- 

secutive passages of the mapping point through M”, and its multiplicity is the maximum 
number 1 which ensures the equality L = 0 for mod 2jn. Since dim M” = 0, the 
periodic motions of (1.2), (2.1), (2.2) which comprise the slippage mode section are 
always stable, and under external effects which do not violate the conditions of existence, 

the time of complete recovery of such oscillations is lower than L. 
Bifuractions of periodic motions with slippage mode section take place in the follow- 

ing cases: 
a) The slippage mode develops on rS. The set of parameter values that correspond 

to such degeneration form in D the boundary C, of the region of existence and stabi- 

lity. They are determined by the relationship M, E r,. 
b) The real solution of (2.4) vanishes. A cylindrical N-surface independent of 

K , whose equations are obtained from (2.3) by the substitution of condition 

(at / at> I 310 = 0 for the inequality, corresponds to this case in space 11, 
c) At some instant t, E (0, t*) the trajectories (2.1) of configuration n be- 

come tangent. The cylindrical C-boundary independent of R in D along which ap- 
pears the indicated degeneration is determined by the analytic conditions of tangency 

Y \Q 11, = 07 Y’ (Q llc = 0 

d) The hypersurfaces C, (R = 0) and C, (R = 1) correspond to the limits of 
the range of physical values of the coefficient of velocity recovery. The segment (t*, 
t-) contracts at points C, to a point, while along C’, the plane region 11, degenerates 



into one-dimensional set r_. 

Note 2. 1. Generally speaking system (2.3) can have 2 E [ 1, 2,. . ., cm) different 
solutions. To each of these corresponds its own region of slippage modes ll,, (Q E [I, 2, 

. . ., ll). In such case the periodic motions may contain Q sections of slippage modes. 

I 
a b 

Fig. 5 

Note 2. 2. At points of sequence {M,‘) (m E [I, 2,. . ., 00)) function f (t, a,,, 0) 
suffer d&continuities of the kind of a finite shock, and at points of some sequence 
{MP’} E (M771’) the inequality f (tpo - 0, &,, 0) < 0 < f (tp’ + 0, il,, 0) is valid. Then 

in the neighborhood of every point MPO there exists a region of slippage modes JISp. 
When constructing the boundary T,,p with the use of (1.12), the e-section adjacent to 
the convergence point Mp” in the interval t E (tpo - a, tpo) is to be taken as the input 
approximation. 

Example. In the case of a single-mass collision-oscillating system without natural 
frequency (0 = 0) but with viscous friction force present (Y > U) function cp (t) = 
const - Q (Q > 0). Integrating Eq. (2.1) with allowance for the above and (1.2), for the 
T- mapping of the half-plane II_ onto itself,we obtain the following system of equa- 

tions: I . 
k+l= ~~--$'Yk+l = R-l',Qv-1 ---a [VI cos (tk-$) + sin (tr-blr)] - 

exp (~5~) [yk’ + Qv-l - a (v cos tlr -I- sin tk)l) 

where crk is the smallest positive root of equation 

[exp (vcJ - 11 [c( (v cos tlr + sin fk) - Qv-r- yk’] + av (cos tk - 

cos (tr - br) + v [sin (tlr - ck) - sin tJ} + Qa, = 0, a = (y2 + I)-’ 

Applying the T-“‘mapping to section 1’+ (t E (- arccos Q, arccos Q), 0, 0), we 

obtain the subdivision of the lalf-plane IL.. This is represented in Fig. 6 for Q = 0.1, 
v = 0.5 , R = 0.2 (solid lines), and R = 0.3 (dash lines); curves 1, 2 and slrelate to 
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El, Tz and I’&. The relative position of curves shows that elements of sequence {rk} 
are close to r, already for k > 2. To determine more precisely the boundary r, we use 

0 3 -6 
. Eq. (1.12). The input approximation I” E II, was de- 

-I 1 
1 

termined by the general sufficiency conditions [l, 3). 

3, The ry8trm with n degree: of frss- 
do m, Let us consider as a reasonable extension of 

model (1.2), (2. I), (2.2) the system with an arbitrary 

finite number n of degrees of freedom which contains 
a fixed pair of colliding elements. 

Collisionless motions of a model of fairly general 
form are defined by the following equations: 

Y” = 10 (L Y, Y’, XI, * . ‘7 %(n-I)), y > Ail (3.1) 

Xi’ = fi (k Y, Y’, %r * * -7 T2(n-1,) (3.2) 
(i = 1, 2, 1 * .I 2 (n - 1)) 

Fig. 6 
Collisions between interacting elements are subject 

to the law (1.2). The discontinuities of derivatives xi’ at instants t k are uniquely de- 
fined by (3.2) as the differences between the values fi (i = I,% . * * 7 2 (n - 1)) 
at instants tk - 0 and t, + 0. 

The dimensionless relative displacement of elements of the collision pair y and the 
generalized coordinates &. . . ., zz2in_l) with the variables t and.&” constitute the 

phase space (II (dim @ = 2n + 1). 

We assume that functions fi E c” (i = 0, 1, . . ., 2 (n - 1))* and depend on 
parameters h,, . . ., A, which together with k, and H constitute space D 

(dimD = I^ -k 2). 
Passing to the investigation of the behavior of phase trajectories (3.1) in the neigh- 

borhood of the 2 (n - 1) -dimensional surface IM” which is defined by formulas(2.3). 
we note that it is possible to show, as in Sect, 2, the validity of estimates 

y (t) = h, t 0 ((t - t”) s), y’ (t) = 0 ((t - to> “) 

Hence, if 

then in the small neighborhood of M” the dependence of fi (i = 0, 1, . . . , 2 (n - 
1)) on y and Y‘ can be neglected, and the investigation of (3.2) and (3.2) may be car- 
ried out with the use of the following separated system of equations: 

Y” = fo(k A,, 0, Xl, . * *I X2(n-l)f, ?I> 3,o (3.3) 

Zi’ = fi (t, h,, 0, x1, . . ., X@*_1)) (i = 1, 2,. . *, 2 (n - 1)) (3*4) 

By integrating (if only numerically) (3.4) with initial conditions disposed on A!P and 
substituting the result into (3.3), we obtain the relationship 

Y” = f (t, ho, to, s;, * . *, &l)h Y > ho 

which may be considered to be the law of collisionless motions of a material point in a 
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one-dimensional half-space under the action of force f. , which depends on “parameters” 

to, zr”, * * 7 G(n-1) . These parameters are obviously subject to the restriction (2.3). 
Using the results obtained in Sect. 2, we complete the definition of the behavior of a 
system with n degrees of freedom by equations of kinematics in the case when the phase 
point reaches the (an - I)-dimensional half-surface r_ (y := h,, y’ : 0, y” < 0) 

ending in (2.3) by the escape of trajectories (3.1) and (3.2) into G. It is also possible 
to state that the behavior of phase trajectories of system (1. X), (3. l), (3.2) in the neigh- 

borhood of M” , as well as the subdivision structure of half-space n_ (y _- &, y’ < 0) 

are determined (the latter within the dimensional accuracy) by the simplest model de- 

fined by (1.1) - (1.3). The character of subdivision of n_ varies quantitatively as a 
whole depending on the specific realization of the sequence (2n - I)-dimensional 
surfaces I’,$ = Tmh’I’ I - where 1’;~ is also a (2n - 1) -dimensional surface isolated by 
condition (2. 6). 

All conclusions reached in Sect. 2 about the iteration procedure for determining the 
limit surface r:, disposition of stationary points of map Tk , and also about the condi- 
tions of their existence and bifurcations,are valid in the general case considered here. 
The theoretical difference between multidimensional and one-dimensional systems con- 
sists in that regions of existence of periodic motions containing a section of slippage 
mode do not, generally, coincide with regions of their stability (owing to the relationship 

dim M” ~. 2(rz -- 1) F 0). 
We note in conclusion that for actual separation of rs for the sake of reducing the 

number of iterations that would ensure the specified acc\racy,it is possible, in the case 
of systems of dimension n >I, to take as the input approximation the &-section which 
is isolated by intersepts of series in powers of a small parameter [9, lo]. 
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ON THE FLOW OF A HEAVY FLUID PI A CHANNEL WITH A CURVILINEAR FLOOR 
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Constructive proof is given of the single-valued solvability of the problem of flow 

of a heavy fluid with free surface in a channel with a curvilinear floor at fairly high 
Froude numbers and certain restrictions imposed on the floor shape. Nonconstruc- 

tive proofs of the. existence of solution with other restrictions on the floor shape 
were previously obtained in [l- 31. The proof of solvability in the case when 
the Froude number is reasonably close to but greater than unity appears in [4]. 

1. The stabilized flow of a perfect incompressible ponderable fluid bounded from 
above by free surface L and by a curvilinear floor S with horizontal asymptotes is 
considered in the plane z = t i- iy (Fig. 1). The coordinate origin is located on s 

AY 
with the y-axis directed vertically upward. At infinity 
upstream (to the left) the fluid flow is uniform and is de- 
fined by velocity V,, and depth H of the stream. 

Let 1 be the curvilinear abscissa of a point on 8 mea- 
sured from the coordinate origin in the direction of flow, 
and $ be the angle between the tangent to $ in the di- 

rection of flow and the z-axis. We specify the shape of 
curve s by the equation 

E p=~(t), t=Z/H (---<<<4 

Fig. 1 
We assume function F (t) to be twice differentiable 

and to satisfy for - 00 < r < 00 the conditions 

1 F (t) [ < B,e-bOlf’, 1 F’ (t) I\< Ble-“” t ’ 

I F (t) I < B I 1 ,‘I 

(1.2) 

I F’ (4 I < B,, ” \ 3 ’ 

where Bo, B1, Bz, B,, b, and biare some positive constants. 
LetthebandK ={O<q<n,‘2}: conformally represent the flow region in the 

plane of the auxiliary variable 5 = E -/- iq , with the straight lines q = rr / 2 and 
q = 0 corresponding, respectively, to the free surface and to the solid boundary, and 
point 5 = U to the coordinate origin of plane z . The complex flow potential w is 
defined by formula 

w = 2V,,Hn-15 (1.31 


